Journal of Organometallic Chemistry, 199 (1980) C47–C49 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

Preliminary communication

CONVERSION OF ALLENE INTO μ -DIMETHYLCARBENE AT A DIRUTHENIUM CENTRE

ANDREW F. DYKE, SELBY A.R. KNOX, and PAMELA J. NAISH Department of Inorganic Chemistry, The University, Bristol BS8 1TS (Great Britain) (Received July 28th, 1980)

Summary

Treatment of $[Ru_2(CO)(\mu-CO) \{\mu-C(O)C_2Ph_2\}(\eta-C_5H_5)_2]$ with allene in toluene at 100°C displaces diphenylacetylene and produces $[Ru(CO)(\eta-C_5H_5)-\{\eta^3-C_3H_4Ru(CO)_2(\eta-C_5H_5)\}]$; upon protonation a 1-methylvinyl cation $[Ru_2(CO)_2(\mu-CO)\{\mu-C(Me)CH_2\}(\eta-C_5H_5)_2]^+$ is formed which undergoes nucleophilic attack by hydride to yield the μ -dimethylcarbene complex $[Ru_2(CO)_2-(\mu-CO)(\mu-CMe_2)(\eta-C_5H_5)_2]$.

The transition metal chemistry of μ -carbenes [1] is of interest because of the possible involvement of such species in Fischer—Tropsch synthesis [2], alkene metathesis and alkyne polymerisation [3]. Synthetic routes to μ -carbene complexes, especially simple hydrocarbon varieties, are not numerous and we are therefore prompted to communicate a new route which provides μ -dimethyl-carbene. It involves an unprecedented conversion of allene.

The dimetallocycle $[\operatorname{Ru}_2(\operatorname{CO})(\mu-\operatorname{CO}) \{\mu-\operatorname{C}(O)\operatorname{C}_2\operatorname{Ph}_2\}(\eta-\operatorname{C}_5\operatorname{H}_5)_2]$ (I), which is readily obtained by the photochemical reaction of diphenylacetylene with $[\operatorname{Ru}_2(\operatorname{CO})_4(\eta-\operatorname{C}_5\operatorname{H}_5)_2]$, has been reported to undergo quantitative alkyne exchange when heated with ethyne or but-2-yne in toluene [4]. When heated under the same conditions with allene, diphenylacetylene is again liberated, in a reaction which provides $[\operatorname{Ru}(\operatorname{CO})(\eta-\operatorname{C}_5\operatorname{H}_5) \{\eta^3-\operatorname{C}_3\operatorname{H}_4-\operatorname{Ru}(\operatorname{CO})_2(\eta-\operatorname{C}_5\operatorname{H}_5)\}]$ (II) quantitatively as very soluble pale yellow crystals. IR and ¹H NMR spectra indicate that the product must be formulated as an η^3 -allyl complex of the Ru(CO)- $(\eta-\operatorname{C}_5\operatorname{H}_5)$ fragment, but with σ -bound Ru(CO)₂ $(\eta-\operatorname{C}_5\operatorname{H}_5)$ as a 2-allyl substituent; i.e. allene enters into coordination with the Ru₂(CO)₃ $(\eta-\operatorname{C}_5\operatorname{H}_5)_2$ unit provided by I to bridge the two metal atoms and remove metal—metal bonding. Precedent for II exists in the complex [Fe₂(CO)₇(C₃H₄)] (V) [5, 6].

Three strong (2023, 1967, 1945) and three weak (2034, 1976, 1953 cm⁻¹ (hexane)) terminal carbonyl stretching frequencies are observed in the IR spectrum of II. We attribute these to the existence of two rotamers, arising from a

0022-328X/80/0000-0000/\$02.25, © 1980, Elsevier Sequoia S.A.

restricted rotation about the Ru— η^3 -allyl bond, of the type suggested previously for the unsubstituted allyl complex [Ru(CO)(η^3 -C₃H₄)(η -C₅H₅)] [7]. The introduction of the very bulky Ru(CO)₂(η -C₅H₅) substituent into the η^3 -allyl group will ensure that rotation is at least as restricted in II. In fact, it appears to be slow even on the NMR time scale, in that the ¹H NMR spectrum of II comprises an intense set of signals due to a major rotamer (τ 4.63 (s, 5 H), 4.94 (s, 5 H), 7.19 (m, 2 H), 8.57 (m, 2 H) (CDCl₃)) and a weak set of accompanying signals at slightly lower field for the minor rotamer. For the syn and anti allylic protons the latter appears only as shoulders, but for the η -C₅H₅ groups the signals are resolved at τ 4.62 and 4.93.

Acidification of II with HBF₄ in ether causes quantitative precipitation of the μ -1-methylvinyl complex [Ru₂(CO)₂(μ -CO){ η -C(Me)CH₂}(η -C₅H₅)₂] [BF₄] (III) as a lemon-yellow powder. Characterisation was facilitated by the previous identification and structural elucidation of the μ -vinyl analogues [M₂(CO)₂(μ -CO)- $(\mu$ -CHCH₂) $(\eta$ -C₅H₅)₂ [BF₄] (M = Fe or Ru) [8]. Like these, complex III exists as a mixture of cis and trans isomers, revealed by the IR spectrum which has ν (CO) at 2036s, 2015vs and 1867s, (br) cm⁻¹ (CH₂Cl₂) and by the ¹H NMR spectrum, which at -30° C has two sets of signals in an intensity ratio of ca. 3.2. The major isomer (which we believe to be the *trans*) has signals at τ 4.29 (s, 5 H), 4.16 (s, 5 H), 5.08 (d, J 1 Hz, 1H), 6.39 (d, J 1 Hz, 1 H), 6.67 (s, 3 H) and the minor isomer signals at τ 3.91 (s, 5 H), 4.06 (s, 5 H), 5.28 (d, J 1 Hz, 1 H), 6.54 (s, 3 H), 6.87 (d, J 1 Hz, 1 H) in acetone- d_6 . On warming, coalescence of signals occurs in accord with the onset of a combination of *cis*-trans interconversion and the established [9] fluxional rearrangement of a μ -vinyl ligand. It is noteworthy that in the transformation of II to III the ruthenium—ruthenium bond lost in going from I to II is regenerated.

Treatment of III with sodium borohydride in acetone at -78° C effects nucleophilic attack by hydride specifically upon the β -vinylic carbon, producing the yellow crystalline μ -dimethylcarbene complex [Ru₂(CO)₂(μ -CO)(μ -CMe₂)-(η -C₅H₅)₂] (IV) in 60% yield. Both *cis* and *trans* isomers are again indicated by the IR spectrum (ν (CO) 1988s, 1953(sh), 1947s (br), 1800s cm⁻¹ (hexane) and at 30°C in CDCl₃ these are seen in the ¹H NMR spectrum to co-exist, without interconverting, in a *cis/trans* ratio of ca. 2/3. For the *cis* isomer signals are at τ 4.80 (s, 10 H), 6.94 (s, 3 H), 6.99 (s, 3 H) and for the *trans* at τ 4.84 (s, 10 H), 6.86 (s, 6 H). The behaviour of the isomers at elevated temperatures is under investigation.

The sequence I+II+III+IV represents a convenient high yield (effectively 60%) route to μ -dimethylcarbene via a unique transformation of allene. Substituted allenes are available and we anticipate being able to convert these analogously (e.g. buta-1,2-diene to μ -C(Me)Et and penta-2,3-diene to μ -CEt₂). It may be noted, finally, that the reaction of complex I marks it as an "Ru₂(CO)₃(η -C₅H₅)₂" source. This was confirmed when bubbling ethylene through a boiling toluene solution of I generated [Ru₂(CO)(C₂H₄)(μ -CO)₂(η -C₅H₅)₂] (VI) rapidly in ca. 70% yield. This complex had previously only been available to us in trace amounts by another route [7].

Further reactions of I with a variety of unsaturated hydrocarbons are under investigation.

Acknowledgement

We are grateful to the S.R.C. for the award of Research Studentships (to A.F.D. and P.J.N.) and to Johnson, Matthey and Co. Ltd. for a loan of ruthenium trichloride.

 ∇T

References

- 1 W.A. Herrmann, Angew. Chem. Int. Ed., 17 (1978) 800.
- 2 E.L. Muetterties and J. Stein, Chem. Rev., 79 (1979) 479.
- 3 A.F. Dyke, S.A.R. Knox, P.J. Naish, and G.E. Taylor, J. Chem. Soc. Chem. Commun., (1980) in press.
- 4 A.F. Dyke, S.A.R. Knox, P.J. Naish, and G.E. Taylor, J. Chem. Soc. Chem. Commun., (1980) 409.
- 5 R. Ben-Shoshan and R. Pettit, J. Chem. Soc. Chem. Commun., (1968) 247.
- 6 R.E. Davis, J. Chem. Soc. Chem. Commun., (1968) 248.
- R.B. King and M. Ishaq, Inorg. Chim. Acta., 4 (1970) 258.
 A.F. Dyke, S.A.R. Knox, P.J. Naish, and A.G. Orpen, J. Ch
- 8 A.F. Dyke, S.A.R. Knox, P.J. Naish, and A.G. Orpen, J. Chem. Soc. Chem. Commun., (1980) 441.
- 9 J.R. Shapley, S.I. Richter, M. Tachikawa, and J.B. Keister, J. Organometal. Chem., 94 (1975) C43.